对脑外伤(TBI)患者的准确预后很难为治疗,患者管理和长期护理提供信息至关重要。年龄,运动和学生反应性,缺氧和低血压以及计算机断层扫描(CT)的放射学发现等患者特征已被确定为TBI结果预测的重要变量。 CT是临床实践中选择的急性成像方式,因为其获取速度和广泛的可用性。但是,这种方式主要用于定性和半定量评估,例如马歇尔评分系统,该系统容易受到主观性和人为错误。这项工作探讨了使用最先进的,深度学习的TBI病变分割方法从常规获得的医院入院CT扫描中提取的成像生物标志物的预测能力。我们使用病变体积和相应的病变统计作为扩展TBI结果预测模型的输入。我们将我们提出的功能的预测能力与马歇尔分数进行比较,并与经典的TBI生物标志物配对。我们发现,在预测不利的TBI结果时,自动提取的定量CT功能的性能与Marshall分数相似或更好。利用自动地图集对齐,我们还确定额叶外病变是不良预后的重要指标。我们的工作可能有助于更好地理解TBI,并提供有关如何使用自动化神经影像分析来改善TBI后预测的新见解。
translated by 谷歌翻译
According to the latest trend of artificial intelligence, AI-systems needs to clarify regarding general,specific decisions,services provided by it. Only consumer is satisfied, with explanation , for example, why any classification result is the outcome of any given time. This actually motivates us using explainable or human understandable AI for a behavioral mining scenario, where users engagement on digital platform is determined from context, such as emotion, activity, weather, etc. However, the output of AI-system is not always systematically correct, and often systematically correct, but apparently not-perfect and thereby creating confusions, such as, why the decision is given? What is the reason underneath? In this context, we first formulate the behavioral mining problem in deep convolutional neural network architecture. Eventually, we apply a recursive neural network due to the presence of time-series data from users physiological and environmental sensor-readings. Once the model is developed, explanations are presented with the advent of XAI models in front of users. This critical step involves extensive trial with users preference on explanations over conventional AI, judgement of credibility of explanation.
translated by 谷歌翻译
Enterprise resource planning (ERP) software brings resources, data together to keep software-flow within business processes in a company. However, cloud computing's cheap, easy and quick management promise pushes business-owners for a transition from monolithic to a data-center/cloud based ERP. Since cloud-ERP development involves a cyclic process, namely planning, implementing, testing and upgrading, its adoption is realized as a deep recurrent neural network problem. Eventually, a classification algorithm based on long short term memory (LSTM) and TOPSIS is proposed to identify and rank, respectively, adoption features. Our theoretical model is validated over a reference model by articulating key players, services, architecture, functionalities. Qualitative survey is conducted among users by considering technology, innovation and resistance issues, to formulate hypotheses on key adoption factors.
translated by 谷歌翻译
Mixtures of von Mises-Fisher distributions can be used to cluster data on the unit hypersphere. This is particularly adapted for high-dimensional directional data such as texts. We propose in this article to estimate a von Mises mixture using a l 1 penalized likelihood. This leads to sparse prototypes that improve clustering interpretability. We introduce an expectation-maximisation (EM) algorithm for this estimation and explore the trade-off between the sparsity term and the likelihood one with a path following algorithm. The model's behaviour is studied on simulated data and, we show the advantages of the approach on real data benchmark. We also introduce a new data set on financial reports and exhibit the benefits of our method for exploratory analysis.
translated by 谷歌翻译
In this work, we introduce a hypergraph representation learning framework called Hypergraph Neural Networks (HNN) that jointly learns hyperedge embeddings along with a set of hyperedge-dependent embeddings for each node in the hypergraph. HNN derives multiple embeddings per node in the hypergraph where each embedding for a node is dependent on a specific hyperedge of that node. Notably, HNN is accurate, data-efficient, flexible with many interchangeable components, and useful for a wide range of hypergraph learning tasks. We evaluate the effectiveness of the HNN framework for hyperedge prediction and hypergraph node classification. We find that HNN achieves an overall mean gain of 7.72% and 11.37% across all baseline models and graphs for hyperedge prediction and hypergraph node classification, respectively.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have become increasingly important in recent years due to their state-of-the-art performance on many important downstream applications. Existing GNNs have mostly focused on learning a single node representation, despite that a node often exhibits polysemous behavior in different contexts. In this work, we develop a persona-based graph neural network framework called PersonaSAGE that learns multiple persona-based embeddings for each node in the graph. Such disentangled representations are more interpretable and useful than a single embedding. Furthermore, PersonaSAGE learns the appropriate set of persona embeddings for each node in the graph, and every node can have a different number of assigned persona embeddings. The framework is flexible enough and the general design helps in the wide applicability of the learned embeddings to suit the domain. We utilize publicly available benchmark datasets to evaluate our approach and against a variety of baselines. The experiments demonstrate the effectiveness of PersonaSAGE for a variety of important tasks including link prediction where we achieve an average gain of 15% while remaining competitive for node classification. Finally, we also demonstrate the utility of PersonaSAGE with a case study for personalized recommendation of different entity types in a data management platform.
translated by 谷歌翻译
G-Enum histograms are a new fast and fully automated method for irregular histogram construction. By framing histogram construction as a density estimation problem and its automation as a model selection task, these histograms leverage the Minimum Description Length principle (MDL) to derive two different model selection criteria. Several proven theoretical results about these criteria give insights about their asymptotic behavior and are used to speed up their optimisation. These insights, combined to a greedy search heuristic, are used to construct histograms in linearithmic time rather than the polynomial time incurred by previous works. The capabilities of the proposed MDL density estimation method are illustrated with reference to other fully automated methods in the literature, both on synthetic and large real-world data sets.
translated by 谷歌翻译
This paper presents an introduction to the state-of-the-art in anomaly and change-point detection. On the one hand, the main concepts needed to understand the vast scientific literature on those subjects are introduced. On the other, a selection of important surveys and books, as well as two selected active research topics in the field, are presented.
translated by 谷歌翻译
Learning fair graph representations for downstream applications is becoming increasingly important, but existing work has mostly focused on improving fairness at the global level by either modifying the graph structure or objective function without taking into account the local neighborhood of a node. In this work, we formally introduce the notion of neighborhood fairness and develop a computational framework for learning such locally fair embeddings. We argue that the notion of neighborhood fairness is more appropriate since GNN-based models operate at the local neighborhood level of a node. Our neighborhood fairness framework has two main components that are flexible for learning fair graph representations from arbitrary data: the first aims to construct fair neighborhoods for any arbitrary node in a graph and the second enables adaption of these fair neighborhoods to better capture certain application or data-dependent constraints, such as allowing neighborhoods to be more biased towards certain attributes or neighbors in the graph.Furthermore, while link prediction has been extensively studied, we are the first to investigate the graph representation learning task of fair link classification. We demonstrate the effectiveness of the proposed neighborhood fairness framework for a variety of graph machine learning tasks including fair link prediction, link classification, and learning fair graph embeddings. Notably, our approach achieves not only better fairness but also increases the accuracy in the majority of cases across a wide variety of graphs, problem settings, and metrics.
translated by 谷歌翻译
Machine learning (ML) models are nowadays used in complex applications in various domains, such as medicine, bioinformatics, and other sciences. Due to their black box nature, however, it may sometimes be hard to understand and trust the results they provide. This has increased the demand for reliable visualization tools related to enhancing trust in ML models, which has become a prominent topic of research in the visualization community over the past decades. To provide an overview and present the frontiers of current research on the topic, we present a State-of-the-Art Report (STAR) on enhancing trust in ML models with the use of interactive visualization. We define and describe the background of the topic, introduce a categorization for visualization techniques that aim to accomplish this goal, and discuss insights and opportunities for future research directions. Among our contributions is a categorization of trust against different facets of interactive ML, expanded and improved from previous research. Our results are investigated from different analytical perspectives: (a) providing a statistical overview, (b) summarizing key findings, (c) performing topic analyses, and (d) exploring the data sets used in the individual papers, all with the support of an interactive web-based survey browser. We intend this survey to be beneficial for visualization researchers whose interests involve making ML models more trustworthy, as well as researchers and practitioners from other disciplines in their search for effective visualization techniques suitable for solving their tasks with confidence and conveying meaning to their data.
translated by 谷歌翻译